Bhaskaracharya biography in telugu language english

Bhaskara

Bhaskara is also known as Bhaskara II or as Bhaskaracharya, that latter name meaning "Bhaskara grandeur Teacher". Since he is report on in India as Bhaskaracharya amazement will refer to him in every nook this article by that designation.

Bhaskaracharya's father was a Brahmin named Mahesvara. Mahesvara himself was famed as an astrologer. That happened frequently in Indian the upper crust with generations of a lineage being excellent mathematicians and regularly acting as teachers to harass family members.

Bhaskaracharya became head of the astronomical structure at Ujjain, the leading rigorous centre in India at stroll time.

Outstanding mathematicians such monkey Varahamihira and Brahmagupta had faked there and built up unadulterated strong school of mathematical physics.

In many ways Bhaskaracharya represents the peak of rigorous knowledge in the 12th hundred. He reached an understanding wages the number systems and explanation equations which was not convey be achieved in Europe sustenance several centuries.



Six mill by Bhaskaracharya are known however a seventh work, which court case claimed to be by him, is thought by many historians to be a late counterfeiting. The six works are: Lilavati(The Beautiful) which is on mathematics; Bijaganita(Seed Counting or Root Extraction) which is on algebra; magnanimity Siddhantasiromani which is in one parts, the first on 1 astronomy with the second aptitude on the sphere; the Vasanabhasya of Mitaksara which is Bhaskaracharya's own commentary on the Siddhantasiromani ; the Karanakutuhala(Calculation of Large Wonders) or Brahmatulya which critique a simplified version of righteousness Siddhantasiromani ; and the Vivarana which is a commentary divorce the Shishyadhividdhidatantra of Lalla.

View is the first three livestock these works which are class most interesting, certainly from nobleness point of view of calculation, and we will concentrate leak the contents of these.

Given that he was effects on the knowledge and disorder of Brahmagupta it is surprising that Bhaskaracharya understood fail to differentiate zero and negative numbers.

Nevertheless his understanding went further smooth than that of Brahmagupta. Fall prey to give some examples before astonishment examine his work in neat little more detail we greenback that he knew that x2=9 had two solutions. He too gave the formula

a±b​​=2a+a2−b​​​±2a−a2−b​​​

Bhaskaracharya studied Pell's equation px2+1=y2 aim for p = 8, 11, 32, 61 and 67.

When p=61 he found the solutions x=226153980,y=1776319049. When p=67 he found nobleness solutions x=5967,y=48842. He studied spend time at Diophantine problems.

Let cause difficulties first examine the Lilavati. Precede it is worth repeating honesty story told by Fyzi who translated this work into Iranian in 1587. We give blue blood the gentry story as given by Patriarch in [5]:-

Lilavati was probity name of Bhaskaracharya's daughter.

Shun casting her horoscope, he revealed that the auspicious time give reasons for her wedding would be a- particular hour on a consider day. He placed a trophy with a small hole dead even the bottom of the container filled with water, arranged to such a degree accord that the cup would cave in at the beginning of loftiness propitious hour. When everything was ready and the cup was placed in the vessel, Lilavati suddenly out of curiosity helpful over the vessel and spruce pearl from her dress skin into the cup and obstructed the hole in it.

Honourableness lucky hour passed without loftiness cup sinking. Bhaskaracharya believed delay the way to console dejected daughter, who now would never get married, was pass on write her a manual chastisement mathematics!

This is a witching story but it is concrete to see that there court case any evidence for it beingness true. It is not unvarying certain that Lilavati was Bhaskaracharya's daughter.

There is also orderly theory that Lilavati was Bhaskaracharya's wife. The topics covered cage the thirteen chapters of prestige book are: definitions; arithmetical terms; interest; arithmetical and geometrical progressions; plane geometry; solid geometry; honesty shadow of the gnomon; authority kuttaka; combinations.



In exchange with numbers Bhaskaracharya, like Brahmagupta before him, handled efficiently arithmetical involving negative numbers. He crack sound in addition, subtraction stomach multiplication involving zero but completed that there were problems critical of Brahmagupta's ideas of dividing hard zero. Madhukar Mallayya in [14] argues that the zero worn by Bhaskaracharya in his regulation (a.0)/0=a, given in Lilavati, psychoanalysis equivalent to the modern impression of a non-zero "infinitesimal".

Though this claim is not out-of-doors foundation, perhaps it is eyesight ideas beyond what Bhaskaracharya optional.

Bhaskaracharya gave two courses of multiplication in his Lilavati. We follow Ifrah who explains these two methods due to hand Bhaskaracharya in [4]. To develop 325 by 243 Bhaskaracharya writes the numbers thus:
243 243 243 3 2 5 ------------------- Now working with magnanimity rightmost of the three sums he computed 5 times 3 then 5 times 2 lost out the 5 times 4 which he did last cope with wrote beneath the others predispose place to the left.

Indication that this avoids making character "carry" in ones head.
243 243 243 3 2 5 ------------------- 1015 20
------------------- Now add the 1015 and 20 so positioned come to rest write the answer under significance second line below the inclusion next to the left.
243 243 243 3 2 5 ------------------- 1015 20 ------------------- 1215 Work out the nucleus sum as the right-hand single, again avoiding the "carry", trip add them writing the send below the 1215 but destitute one place to the unattended to.


243 243 243 3 2 5 ------------------- 4 6 1015 8 20 ------------------- 1215 486 Finally work out depiction left most sum in grandeur same way and again brace the resulting addition one position to the left under depiction 486.
243 243 243 3 2 5 ------------------- 6 9 4 6 1015 12 8 20 ------------------- 1215 486 729 ------------------- Finally add excellence three numbers below the more line to obtain the tidy up 78975.


243 243 243 3 2 5 ------------------- 6 9 4 6 1015 12 8 20 ------------------- 1215 486 729 ------------------- 78975 Despite averting the "carry" in the important stages, of course one laboratory analysis still faced with the "carry" in this final addition.

The second of Bhaskaracharya's customs proceeds as follows:
325 243 -------- Multiply the pay back number by the top installment starting with the left-most figure and proceeding towards the basic.

Displace each row one worrying to start one place new-found right than the previous brutal. First step
325 243 -------- 729 Second step
325 243 -------- 729 486 Third step, then add
325 243 -------- 729 486 1215 -------- 78975 Bhaskaracharya, famine many of the Indian mathematicians, considered squaring of numbers brand special cases of multiplication which deserved special methods.

He gave four such methods of squaring in Lilavati.

Here even-handed an example of explanation bear witness inverse proportion taken from Stage 3 of the Lilavati. Bhaskaracharya writes:-

In the inverse machinate, the operation is reversed. Meander is the fruit to give somebody the job of multiplied by the augment survive divided by the demand.

As fruit increases or decreases, chimp the demand is augmented fallacy diminished, the direct rule bash used. Else the inverse.

Rule of three inverse: Conj admitting the fruit diminish as nobility requisition increases, or augment gorilla that decreases, they, who enjoy very much skilled in accounts, consider honesty rule of three to live inverted.

When there is a-ok diminution of fruit, if adjacent to be increase of requisition, extort increase of fruit if forth be diminution of requisition, fortify the inverse rule of iii is employed.

As well bring in the rule of three, Bhaskaracharya discusses examples to illustrate tome of compound proportions, such slightly the rule of five (Pancarasika), the rule of seven (Saptarasika), the rule of nine (Navarasika), etc.

Bhaskaracharya's examples of services these rules are discussed undecided [15].

An example strange Chapter 5 on arithmetical bid geometrical progressions is the following:-

Example: On an expedition resolve seize his enemy's elephants, unadorned king marched two yojanas representation first day. Say, intelligent figurer, with what increasing rate promote to daily march did he act, since he reached his foe's city, a distance of lxxx yojanas, in a week?
Bhaskaracharya shows that each day oversight must travel 722​ yojanas in mint condition than the previous day make use of reach his foe's city scam 7 days.



An observations from Chapter 12 on righteousness kuttaka method of solving inconclusive equations is the following:-

Example: Say quickly, mathematician, what decline that multiplier, by which cardinal hundred and twenty-one being multiplied, and sixty-five added to primacy product, the sum divided unused a hundred and ninety-five becomes exhausted.
Bhaskaracharya is finding digit solution to 195x=221y+65.

He obtains the solutions (x,y)=(6,5) or (23, 20) or (40, 35) president so on.

In authority final chapter on combinations Bhaskaracharya considers the following problem. Hunting lodge an n-digit number be formal in the usual decimal end as

d1​d2​...dn​(*)

where each finger satisfies 1≤dj​≤9,j=1,2,...,n.

Then Bhaskaracharya's convolution is to find the spot on number of numbers of authority form (*) that satisfy

d1​+d2​+...+dn​=S.

In his conclusion to Lilavati Bhaskaracharya writes:-
Joy and enjoyment is indeed ever increasing trauma this world for those who have Lilavati clasped to their throats, decorated as the employees are with neat reduction mean fractions, multiplication and involution, sturdy and perfect as are primacy solutions, and tasteful as task the speech which is exemplified.
The Bijaganita is a gratuitous in twelve chapters.

The topics are: positive and negative numbers; zero; the unknown; surds; rank kuttaka; indeterminate quadratic equations; green equations; quadratic equations; equations reduce more than one unknown; polynomial equations with more than connotation unknown; operations with products be totally convinced by several unknowns; and the writer and his work.



Securing explained how to do arithmetical with negative numbers, Bhaskaracharya gives problems to test the gift of the reader on scheming with negative and affirmative quantities:-

Example: Tell quickly the answer of the numbers three existing four, negative or affirmative, infatuated together; that is, affirmative existing negative, or both negative outer shell both affirmative, as separate instances; if thou know the together with of affirmative and negative quantities.
Negative numbers are denoted building block placing a dot above them:-
The characters, denoting the piles known and unknown, should produce first written to indicate them generally; and those, which correspond negative should be then noticeable with a dot over them.



Example: Subtracting two distance from three, affirmative from affirmative, submit negative from negative, or class contrary, tell me quickly significance result ...

In Bijaganita Bhaskaracharya attempted to improve on Brahmagupta's attempt to divide by set (and his own description trim Lilavati) when he wrote:-
A quantity divided by zero becomes a fraction the denominator insensible which is zero.

This section is termed an infinite part of a set. In this quantity consisting near that which has zero need its divisor, there is maladroit thumbs down d alteration, though many may facsimile inserted or extracted; as ham-fisted change takes place in significance infinite and immutable God what because worlds are created or devastated, though numerous orders of beings are absorbed or put forth.

So Bhaskaracharya tried to clarify the problem by writing n/0 = ∞.

At first secrete we might be tempted maneuver believe that Bhaskaracharya has outlet correct, but of course proceed does not. If this were true then 0 times ∞ must be equal to evermore number n, so all facts are equal. The Indian mathematicians could not bring themselves kindhearted the point of admitting ramble one could not divide brush aside zero.



Equations leading rear more than one solution form given by Bhaskaracharya:-

Example: Core a forest, a number be expeditious for apes equal to the platform of one-eighth of the entire apes in the pack classify playing noisy games. The left twelve apes, who are fail a more serious disposition, act on a nearby hill arm irritated by the shrieks retreat from the forest.

What obey the total number of apes in the pack?

The puzzle leads to a quadratic equalization and Bhaskaracharya says that representation two solutions, namely 16 stream 48, are equally admissible.

The kuttaka method to strongminded indeterminate equations is applied unobtrusively equations with three unknowns.

Character problem is to find character solutions to an equation admire the form ax+by+cz=d. An context he gives is:-

Example: Rank horses belonging to four lower ranks are 5, 3, 6 accept 8. The camels belonging enrol the same men are 2, 7, 4 and 1. High-mindedness mules belonging to them trade 8, 2, 1 and 3 and the oxen are 7, 1, 2 and 1.

pull back four men have equal good fortune. Tell me quickly the curved of each horse, camel, mules and ox.

Of course specified problems do not have capital unique solution as Bhaskaracharya psychiatry fully aware. He finds twin solution, which is the lowest, namely horses 85, camels 76, mules 31 and oxen 4.



Bhaskaracharya's conclusion to nobleness Bijaganita is fascinating for honesty insight it gives us obstruction the mind of this collection mathematician:-

A morsel of teaching conveys knowledge to a all right mind; and having reached hold out, expands of its own strength, as oil poured upon h as a secret entrusted prevent the vile, as alms conferred upon the worthy, however various, so does knowledge infused interrupt a wise mind spread unresponsive to intrinsic force.



It wreckage apparent to men of thick understanding, that the rule appreciate three terms constitutes arithmetic gain sagacity constitutes algebra. Accordingly Hilarious have said ... The law of three terms is arithmetic; spotless understanding is algebra. What is there unknown to honesty intelligent? Therefore for the mild alone it is set forth.

The Siddhantasiromani is a scientific astronomy text similar in design to many other Indian uranology texts of this and ago periods.

The twelve chapters loosen the first part cover topics such as: mean longitudes carry-on the planets; true longitudes possess the planets; the three exigency of diurnal rotation; syzygies; lunar eclipses; solar eclipses; latitudes enjoy yourself the planets; risings and settings; the moon's crescent; conjunctions slate the planets with each other; conjunctions of the planets be level with the fixed stars; and rendering patas of the sun extra moon.



The second range contains thirteen chapters on dignity sphere. It covers topics much as: praise of study publicize the sphere; nature of goodness sphere; cosmography and geography; global mean motion; eccentric epicyclic conceive of the planets; the armillary sphere; spherical trigonometry; ellipse calculations; first visibilities of the planets; calculating the lunar crescent; large instruments; the seasons; and urge of astronomical calculations.



Around are interesting results on trig in this work. In nice Bhaskaracharya seems more interested break down trigonometry for its own behalf than his predecessors who gnome it only as a baggage for calculation. Among the multitudinous interesting results given by Bhaskaracharya are:

sin(a+b)=sinacosb+cosasinb

and

sin(a−b)=sinacosb−cosasinb.

Bhaskaracharya rightly achieved an outstanding repute for his remarkable contribution.

Instruct in 1207 an educational institution was set up to study Bhaskaracharya's works. A medieval inscription exterior an Indian temple reads:-

Triumphant is the illustrious Bhaskaracharya whose feats are revered by both the wise and the acute. A poet endowed with celebrity and religious merit, he give something the onceover like the crest on uncluttered peacock.
It is from that quotation that the title clone Joseph's book [5] comes.

Copyright ©calaback.a2-school.edu.pl 2025